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ABSTRACT: Semiempirical orthogonalization-corrected
methods (OM1, OM2, and OM3) go beyond the standard
MNDO model by explicitly including additional interactions
into the Fock matrix in an approximate manner (Pauli repul-
sion, penetration effects, and core−valence interactions),
which yields systematic improvements both for ground-state
and excited-state properties. In this Article, we describe the
underlying theoretical formalism of the OMx methods and
their implementation in full detail, and we report all relevant
OMx parameters for hydrogen, carbon, nitrogen, oxygen, and
fluorine. For a standard set of mostly organic molecules commonly used in semiempirical method development, the OMx results
are found to be superior to those from standard MNDO-type methods. Parametrized Grimme-type dispersion corrections can be
added to OM2 and OM3 energies to provide a realistic treatment of noncovalent interaction energies, as demonstrated for the
complexes in the S22 and S66×8 test sets.

1. INTRODUCTION

Over the past decades, semiempirical quantum-chemical (SQC)
methods have been widely used in computational chemistry to
study molecular structure, stability, spectroscopy, and reactivity.1

They are computationally much less demanding than ab initio or
density functional theory (DFT) methods and can therefore be
applied to investigate huge molecules or large sets of molecules
and to perform large-scale molecular dynamics simulations,
also in the context of quantum mechanics/molecular mechanics
(QM/MM) approaches.1,2

Formally, SQC methods are simplified molecular orbital
(MO) treatments. Compared with ab initio MO methods, their
computational speed comes from the neglect of many small
(mostly two-electron) integrals. To compensate for the asso-
ciated errors, the remaining integrals are usually represented by
functions containing parameters, which are then fitted against
experimental or high-level theoretical data to achieve a reason-
able compromise between computational speed and accu-
racy.1,3,4 Many recent benchmark studies actually show that the
accuracy of modern SQC methods may approach or sometimes
even exceed that of standard DFT methods, especially for
ground-state properties of organic molecules,3−10 despite the fact
that for many years method development has been much less
intense in the SQC field than in the ab initio and DFT realm.11

Most established modern SQC methods make use of the
NDDO (neglect of diatomic differential overlap) integral
approximation and are based on the general-purpose MNDO
(modified neglect of diatomic overlap) model introduced in
1977.12,13 Since then, there have beenmany refinements aimed at
enhancing the accuracy and the application range of the original

MNDOmethod,1,3 for example by increasing the size and quality
of the training data during parametrization, by modifying the
empirical core repulsion function, and by extending the basis set
from sp to spd. The resulting MNDO-type methods include the
following SQC treatments (standard acronyms, in paren-
theses year of publication): AM114 (1985), PM315,16 (1989),
MNDO/d17−19 (1992), PDDG/MNDO and PDDG/PM320,21

(2002), AM1*22 (2003), RM123 (2006), PM65 (2007), and
PM74 (2013). To enable the treatment of solid-state systems,
PM7 uses modified parametric expressions for the electrostatic
interactions.4 For the latest PMx methods, parameters are
available for most elements in the Periodic Table.4,5

Another line of SQC development at the NDDO level goes
beyond the MNDO model by including explicit orthogonaliza-
tion corrections into the one-electron terms of the Fock matrix.1

This gives rise to a series of orthogonalization-corrected methods
(OMx): OM124,25 (1991−1993), OM226,27 (1996−2000), and
OM328 (2003). They differ in the extent to which these
corrections are applied to the core Hamiltonian part of the Fock
matrix (see section 2.2). The orthogonalization terms represent
Pauli repulsions, which are formally missing in the Fock matrix of
MNDO-type methods where they are mimicked by the empirical
repulsive terms in the core repulsion function.1,29 Their explicit
inclusion in the OMx methods overcomes some characteristic
shortcomings of MNDO-type methods. For example, it offers
significant improvements in the description of conformational
properties, hydrogen bonds, and transition states, and it leads to a
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qualitatively correct asymmetric splitting of bonding and
antibonding orbitals (as opposed to the symmetric splitting in
MNDO-type methods).1 Statistical evaluations in benchmark
studies show that OMx methods are overall more accurate than
MNDO-type methods both for ground-state and excited-state
properties.6,30 However, OMx parameters are currently only
available for the elements H, C, N, O, and F, which limits their
applicability. The benefits of an explicit SQC treatment of
orthogonalization have also been demonstrated in an independ-
ent proof-of-principle study at the MNDO level (NO-MNDO
method, 2006).31

Many recent applications of OMx methods focus on elec-
tronically excited states of organic molecules and their dynamics.
For the exploration of excited-state potential energy surfaces the
OMx methods are clearly superior to standard MNDO-type
approaches;30 the semiempirical INDO/S method is adequate
only for vertical transitions;32 time-dependent density functional
theory (TD-DFT) has well-known limitations for charge-transfer
states and for states of multireference character;33,34 and accurate
correlated ab initio approaches are often too costly for larger
systems. To account for static correlation effects, OMx studies of
excited states employ a multireference configuration interaction
(MRCI) treatment,35 with a properly chosen, relatively small
active space and with an efficient implementation of (semi)-
analytic derivatives.36,37 To quote a few examples, OMx/MRCI
excited-state dynamics simulations using surface hopping38

have been reported for azobenzenes39,40 and other photo-
switches,41−43 for a molecular rotary motor,44 for a variant of
the GFP chromophore,45 for DNA bases in different environ-
ments,46−52 and for the mechanism of the photoinduced ultrafast
Wolff rearrangement.53 Regardless of these successful excited-
state studies, we will focus in the remainder of this Article on
the OMx performance for ground-state properties, since com-
prehensive excited-state validations have been presented else-
where.30

Dispersion interactions play an important role inmany parts of
chemistry and biochemistry, for example in molecular recog-
nition and noncovalent complex formation.54 Dispersion can be
treated adequately by correlated ab initiomethods but is formally
not included in single-determinant MO approaches (at the
ab initio, standard DFT, and SQC levels). In recent years, there
have been many efforts to remedy this deficiency, especially by
the development of simple empirical dispersion corrections, as
exemplified by the work of Grimme on DFT methods.55−58

Such corrections have also been applied to various SQC
approaches, sometimes combined with further empirical
corrections for other types of noncovalent interactions such as
hydrogen bonding, which are often described not too well by
standard SQC methods.3 General-purpose dispersion-corrected
SQCmethods include treatments labeled AM1-D and PM3-D;59

PM6-DH;60 AM1, PM6, and OM3 augmented with DH2
corrections;61 AM1, PM6, and OM3 augmented with DH+
corrections;62 AM1, RM1, PM6, and OM3 with D3H4
corrections;63 PM6-D3H;64 PM7;4 and PM6-D3H+;65 as well
as OM2-D3 and OM3-D310 (for a recent review see ref 66).
In most of these approaches,66 the parameters of the core SQC
methods were kept fixed, and only the correction terms were
parametrized. A notable exception is the recently proposed PM7
method, for which a full parametrization was performed (with
dispersion and all other corrections included simultaneously).4

In our own initial work in this area, we augmented the OMx
methods with partially reoptimized Grimme dispersion
corrections (without changing any of the basic OMx parameters)

and showed that this gave much improved results for non-
covalent complexes and allowed for realistic QM and QM/MM
calculations on the binding between antibody 34E4 and a
hapten.67 At a later stage, we reoptimized the Grimme DFT-D2
corrections more carefully for OM2 and OM3 using larger
training sets;68 in the following, the resulting treatments are
denoted as OM2-D2 and OM3-D2, respectively. The D3(BJ)
dispersion corrections were recently parametrized by the
Grimme group for OM2 and OM3.10 These OM2-D3 and
OM3-D3 treatments appear to perform similarly well as many of
the computationally more expensive dispersion-corrected DFT
approaches.10

It is obvious from the preceding literature survey that the OMx
methods have been available and in use for some time. However,
in the case of the more advanced OM2 and OM3 methods, the
formalism and the parameters have been fully described only in
two Ph.D. theses.26,28 The main purpose of this Article is to
document the underlyingmethodology, the implementation, and
the optimized parameters of the OMx methods in full detail
to make them more easily accessible. In addition, we present
and discuss the dispersion corrections that can be used in
combination with the OMx methods. In terms of validation,
we provide numerical results and statistical evaluations for
the test sets that have been used during the development of the
OMx methods and the associated dispersion corrections.
We have performed further extensive benchmarks of the OMx
and OMx-Dn methods using many of the recently published
validation and test sets. The corresponding results are reported
in the following Article on ground-state properties including
noncovalent interactions.69

2. METHODOLOGY
2.1. Overview.The most popular semiempirical methods for

studying ground-state molecular properties, e.g., AM1,14 PM3,15

PM6,5 PM7,4 and the PDDG variants,20,21 are based on the
MNDO model.12 In matrix notation, the basic equations of this
model are as follows:

ψ ϕ= C (1)

=FC CE (2)

= +F H G P( ) (3)

=P C C2 o o
T

(4)

∑= +
<

E E E
A B

ABtot el
core

(5)

The MOs ψ are expressed in a minimal valence basis as linear
combinations of atomic orbitalsϕ (eq 1). TheMO coefficientsC
are obtained by solving the secular equation in zero-differential-
overlap (ZDO) approximation;70 F is the Fock matrix and E
denotes the diagonal matrix of MO energies (eq 2). The Fock
matrix is the sum of the one-electron core Hamiltonian matrixH
and a two-electron part G that depends on the density matrix P
(eq 3). The NDDO integral approximation is invoked in the
computation of the Fock matrix, which leads to the neglect of
many small integrals (e.g., all three-center and four-center two-
electron integrals). The dependence of G on P necessitates an
iterative self-consistent-field (SCF) solution of the secular
equation, since P is determined by the coefficients Co of the
occupied MOs (eq 4, closed-shell case; superscript “T” denotes
the transpose). The total energy Etot is obtained as the sum of the
converged electronic energy Eel and the core−core repulsions
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EAB
core between atoms A and B (eq 5). Following semiempirical

convention, the total energy of a molecule can be converted into
its heat of formation by subtracting the total energies of the
constituent atoms (computed at the same level) and adding the
experimental heats of formation of the atoms.12

All of these basic features of the MNDOmodel are retained in
the OMx methods. In addition, all one-center integrals are
treated in exactly the same manner. The one-center one-electron
energies are considered to be adjustable parameters that are
optimized in the parametrization procedure, while the one-
center two-electron integrals are derived from experimental data
(atomic spectra) and kept fixed at the values used in MNDO.12

The OMx methods differ from the MNDO model in the
treatment of the two-center terms entering the core Hamiltonian
and the Fock matrix.
Conceptually, the MNDO electronic structure model formally

neglects the Pauli exchange repulsions, although their effects on
energies may be partly retrieved in MNDO-type methods
through additional core repulsion potentials and versatile param-
etrizations.4,5,14,15,20,21,71 However, intrinsic deficiencies of the
MNDO-type methods are evident in many studies;1,24−29,72−75

e.g., the gaps between bonding and antibonding MOs and the
corresponding excitation energies are significantly underesti-
mated. The OMx methods include explicit orthogonalization
corrections in the core Hamiltonian to model Pauli exchange
repulsions in the electronic structure calculations.24−28 For the
sake of consistency, penetration effects and core−valence
interactions are also incorporated into the core Hamiltonian,
and the resonance integrals are represented by a nontraditional
empirical expression.25

At the implementation stage, there is another major dis-
tinction. The two-center Coulomb interactions are represented
as parametric functions in MNDO-type methods, while they are
computed analytically at the OMx level followed by a uniform
Klopman−Ohno scaling.76,77 The Klopman−Ohno scale factor,
f KO, is chosen such that the resulting two-center two-electron
integrals (sAsA,sBsB) are the same as in the MNDO model12,78

at all distances RAB. This ensures that the two-center two-electron
integrals converge to the correct one-center limit (i.e., to the
MNDO values of the one-center two-electron integrals; see
earlier discussion) and that they show the correct asymptotic
behavior at large distances; at intermediate distances, the
Klopman−Ohno scaling will account for dynamic correlation
effects in an average manner. To achieve a balanced treatment of
all two-center Coulomb interactions, the Klopman−Ohno
scaling is applied not only to the electron−electron repulsions
but also to the core−electron attractions and core−core
repulsions.
In the next two sections, we present the distinguishing fea-

tures of the OMx methods and their implementation in more
detail.
2.2. OMx Formalism: Core Hamiltonian. The secular

equation without overlap (eq 2) is valid in the symmetrically
orthogonalized Löwdin basis,79,80 and hence the Fock matrix
should correspond to such an orthogonalized basis in SQC
methods. The Löwdin orthogonalization is known to affect the
one-electron integrals in the Fock matrix more strongly than the
two-electron integrals, and there is numerical evidence that the
two-electron integrals surviving under the NDDO approxima-
tion are not too different when evaluated in the original
nonorthogonal and the orthogonalized basis. In the OMx
methods, we therefore decided not to modify the two-electron
integrals by orthogonalization corrections.

The one-electron core Hamiltonian of the OMx methods is
given by

∑

∑

δ

β

= + + + +

= +

μν μμ μν μν μν μν μν

μλ μλ μλ

H U V V V V

H V

[ ] (6)

(7)

B
B B B B

C
C

core
,

s
,

ORT
,

PI
,

ECP

core
,

ORT

where the subscripts μ and ν refer to orbitals centered at the same
atom A, λ designates an orbital at a different atom B (B≠ A), and
C is an atom that is neither A nor B; δμν denotes the Kronecker
delta. The one-electron energies Uμμ are adjustable parameters.
The integrals Vμν,B

s represent semiempirical core−electron
attractions (superscript “s”) expressed in terms of related two-
center two-electron integrals (see later text).12

The most important enhancement of the OMx methods over
the MNDO model is the inclusion of the valence orthogonaliza-
tion corrections (VORT). Their introduction necessitates the
incorporation of two other terms that can be of similar magni-
tude and exhibit a similar distance dependence: the penetration
integrals (VPI) account for differences between corresponding
core−electron attractions and electron−electron repulsions,
while the effective core potentials (ECPs) capture the influence
of the inner core electrons (VECP). The sum of the repulsive
orthogonalization corrections (VORT), the attractive penetration
integrals (VPI), and the repulsive effective core potentials (VECP)
normally gives rise to an overall repulsive contribution to the
corresponding element of the core Hamiltonian. All these terms
are formally neglected in MNDO-type methods, where they are
modeled by an empirical effective pair potential in the core
repulsion function.
We now present explicit expressions for these terms in the

OMx formalism which have been derived previously.24−27 Vμν,B
ORT

and Vμλ,C
ORT denote the two-center (atoms A and B) and three-

center (atoms A, B, and C) orthogonalization corrections to the
core Hamiltonian, respectively. They are given by

∑

∑

β β= − +

+ + −

μν
ρ

μρ ρν μρ ρν

ρ
μρ ρν μμ νν ρρ

∈

∈

V F S S

F S S H H H

1
2

( )

1
8

( 2 )

B
B

B
B B A

,
ORT

1
A

2
A

,
loc

,
loc

,
loc

(8)

∑

∑

β β= − +

+ + − −

μλ
ρ

μρ ρλ μρ ρλ

ρ
μρ ρλ μμ λλ ρρ ρρ

∈

∈

V G S S

G S S H H H H

1
2

( )

1
8

( )

C
C

C
C C A B

,
ORT

1
AB

2
AB

,
loc

,
loc

,
loc

,
loc

(9)

= +μμ μμ μμH U VX X,
loc

,
s

(10)

= +G G G
1
2

( )1
AB

1
A

1
B

(11)

= +G G G
1
2

( )2
AB

2
A

2
B

(12)

where Sμρ and βρν are elements of the overlap matrix and of the
matrix of resonance integrals (defined later), respectively.Hμμ,X

loc is
an element of the local core Hamiltonian restricted to atom pair
A−X;24−26 it is defined as the sum of the one-electron energyUμμ

(atom A) and the semiempirical core−electron attraction Vμν,X
s

to the second atom X in the pair considered. To avoid rotational
invariance issues, average local matrix elements are employed for
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the three p functions at any given atom.26 F andG are parameters
that are used to adjust the magnitudes of the orthogonalization
corrections to the one- and two-center core Hamiltonian,
respectively; the subscripts 1 and 2 specify the type of these
corrections, while the superscripts A and B denote the associated
atoms.
The orthogonalization corrections are incorporated into

the different OMx methods to a different extent. The earliest
variant (OM1) only contains the corrections to the one-center
terms, i.e., Vμν,B

ORT (eq 8). The OM2 method fully includes
all correction terms listed previously. However, further
analysis showed that the contributions from the second sum in
eqs 8 and 9 are often small and of varying sign, and they normally
have only a minor influence on the results, while notably
increasing the computational effort for large molecules. There-
fore, they are neglected in the OM3 method, i.e., F2 ≡ 0 and
G2 ≡ 0; this is the only formal distinction between OM2 and
OM3.
The penetration integrals81 are treated in the same manner in

all OMx methods, as specified in the original OM1 work.25

Briefly, following standard conventions, the semiempirical core−
electron attractions Vμν,B

s (superscript “s”) are expressed in terms
of related two-center two-electron integrals (μAνA,sBsB)s

involving the ss charge distribution at atom B. The penetration
integrals Vμν,B

PI are the difference between the actual core−
electron attractions (Vμν,B

s + Vμν,B
PI ) and their semiempirical values

Vμν,B
s . In the OMx methods the former are obtained from the

analytic core−electron attraction integrals Vμν,B
a (superscript “a”)

by uniform scaling25 with f KO (see as follows).

μ ν= −μνV Z s s( , )B B,
s A A B B s

(13)

+ =μν μν μνV V f VB B B,
s

,
PI

KO ,
a

(14)

where ZB is the charge of the core of atom B.
In early semiempirical work, the attractive penetration

integrals had been included while neglecting the repulsive
orthogonalization corrections, which gave much too short bond
lengths and much too large binding energies.70,82 In most of the
later semiempirical methods, both types of interactions were
neglected on heuristic grounds,12,82 assuming that these two
terms will cancel and that any remaining effects can be taken into
account through small empirical corrections and careful
parametrization. The OMx methods treat these terms explicitly,
with the motivation to recover electronic effects resulting from
an incomplete cancelation of these terms.
In the MNDO model, the core electrons are treated as if

they were incorporated into the corresponding nucleus, with
a corresponding reduction of the effective nuclear charge
experienced by the valence electrons (assuming complete
screening); the repulsions between the inner and valence shells
arising from orthogonality and exchange effects are also
disregarded. By contrast, the OMx methods attempt to incor-
porate core−valence interactions by means of ECPs for the core
electrons, in analogy to ab initio and DFT approaches.83−86 The
ECP contributions are treated differently in the OMx variants. In
OM1 the integrals Vμν,B

ECP are evaluated analytically (ab initio) and
then subjected to Klopman−Ohno scaling (like all Coulomb
interactions).25 The OM2 and OM3 methods employ the
following semiempirical ECP formulas derived previously:26,27

∑= − + +μν
α

μα αν μα αν μα αν αα
∈

V S G G S S S F( )B
B

,
ECP

(15)

where Gμα is an empirical function that is chosen to be of
the same form26,27 as the empirical resonance integral (see
eq 17):

β β α α= + − +μα μ α μ αG R R
1
2

( ) exp[ ( ) ]AB AB
A B A B 2

(16)

These expressions contain several adjustable parameters
related to the core electrons (index α), namely, αα, βα, Fαα, and
the core orbital exponent ζα needed to evaluate the core−valence
overlap integrals Sμα. Extensive numerical tests indicate
reasonable qualitative agreement between the ab initio and semi-
empirical ECPs when using properly adjusted parameters.26,27

The explicit inclusion of orthogonalization corrections in the
OMx methods implies the need for a different treatment of the
resonance integrals, which has been introduced and discussed in
the original OM1 work.25 In MNDO-type methods, the two-
center resonance integrals are taken to be proportional to the
overlap integrals.4,5,12,14,15,71 This assumption cannot be well
justified for an orthogonalized atomic basis. Therefore, on the
basis of comparisons with corresponding ab initio matrix
elements,24,25 the following empirical formula is adopted for
the resonance integrals in the OMx methods:24−28

β β β α α= + − +μλ μ λ μ λR R
1
2

( ) exp[ ( ) ]AB AB
loc A B A B 2

(17)

where αA and βA are adjustable parameters for the various orbital
types of atoms A and B. The preceding expression refers to a local
diatomic coordinate system and contains an implicit phase
factor.25 The resonance integrals in the molecular coordinate
system are obtained by standard rotational transformations.
To summarize, the most important improvement in the OMx

methods is the inclusion of valence orthogonalization corrections
so that the repulsive Pauli exchange effects can be taken into
account in an explicit manner. Penetration integrals for the
valence shell and ECPs for the core−valence interactions are also
included in the OMx methods for the sake of consistency,
in order to ensure a balanced overall treatment. As a further
consequence, the two-center resonance integrals are represented
by a different kind of empirical formula to better mimic the
behavior of the corresponding ab initio matrix elements.
Accordingly, the OMx methods go significantly beyond the
established MNDO model by incorporating additional inter-
actions in the electronic structure calculation.

2.3. Implementation.TheOMxmethods employ aminimal
valence basis of contracted Gaussian functions (STO-3G for
hydrogen and ECP-3G for carbon, nitrogen, oxygen, and
fluorine), which has been fully documented previously.24,25 To
allow for fine-tuning, there is one adjustable parameter ζ per
element that scales the exponents of all Gaussian primitives in
the usual manner (multiplication by ζ2). These scale factors ζ are
optimized in the parametrization of the OMx methods but are
expected to remain close to 1. All analytic integral evaluations
are performed with these scaled basis functions.
The elements of the one-electron core Hamiltonian matrix H

are fully specified in the preceding section (see eqs 6−17).
Analytic integral evaluations are performed for the valence-shell
overlap integrals Sμν (see eqs 8 and 9) and the core−electron
attractions Vμν,B

a (see eq 14). In OM1 the core−valence
interactions Vμν,B

ECP are also evaluated analytically,25 while they
are represented in OM2 and OM3 by an empirical expression
containing core−valence overlap integrals Sμα (see eq 15). The
latter are computed analytically using standard STO-3G basis
functions for the core orbitals, with adjustable scale factors ζα that
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are optimized in the parametrization of OM2 and OM3 for each
element; their values are expected to be close to the optimum
core orbital exponents for Slater-type orbitals.
The two-electron integrals (entering the Fock matrix via G)

are treated in the same manner in all OMx methods.25 The
semiempirical scheme used in MNDO-type methods for
evaluating the two-center two-electron integrals, in terms of a
point-charge representation of multipole−multipole interac-
tions,78 is replaced by the analytic computation of these integrals
over the contracted Gaussian valence orbitals,24,25 followed by a
uniform Klopman−Ohno scaling.76,77

μ ν λ σ μ ν λ σ= f( , ) ( , )A A B B s
KO

A A B B a
(18)

=f s s s s s s s s( , ) /( , )KO
A A B B MNDO A A B B a

(19)

f KO is defined such that the semiempirical two-center two-
electron integrals (sAsA,sBsB)s are the same as in the MNDO
model12,78 (as required in the one-center limit). The other two-
center two-electron integrals (μAνA,λBσB)s will be of similar
magnitude as in MNDO but will generally differ slightly.
To achieve a balanced treatment of all two-center Coulomb
interactions, the Klopman−Ohno scaling is applied not only to
the core−electron attractions (eq 14) and electron−electron
repulsions (eq 18) but also to the core−core repulsions EAB

core

between atoms A and B:

=E f Z Z R/AB A B AB
core

KO (20)

This completes the description of integral evaluation in the OMx
methods. Some further comments seem appropriate concerning
the practical implementation of the three-center orthogonaliza-
tion corrections in OM2 andOM3 (eq 9). Generally speaking, all
two-center integrals in the OMxmethods are evaluated in a local
coordinate system and are then converted to the molecular
coordinate system using standard rotational transformations.
This is no longer feasible for the three-center orthogonalization
corrections which need to be assembled directly in the molecular
coordinate system. For this purpose, the overlap matrix S and the
matrix of resonance integrals β are precomputed in the molecular
coordinate system, as well as the required local core Hamiltonian
matrix elements of the type Hμμ,X

loc (eqs 9 and 10); the one-center
matrix elements of β are defined to be zero.
For N basis functions, the computation of the three-center

orthogonalization corrections (eq 9) formally scales as O(N3),
which may raise some concern since all other integral evaluations
in SQC methods generally scale as O(N2). However, a careful
implementation that exclusively targets the nonzero contri-
butions already allows an efficient evaluation of the three-center
orthogonalization corrections (consuming only a fraction of the
overall computation time).
Moreover, the contributions for a given combination of atoms

(A, B, C) fall off quickly with the interatomic distances RAC and
RBC because of the steep decline of the corresponding elements
of S and β that appear in eq 9. It is thus possible to use
prescreening techniques to minimize the computational effort,
by utilizing the precalculated matrices S and β. Since the
resonance integrals (eq 17) normally fall off faster than the
corresponding overlap integrals, a conservative prescreening
criterion may be based on the product of the ss overlap integrals
for atom pairs A−C and B−C: for example, if this product is
smaller than a user-defined cutoff τ1 the three-center contri-
butions for the combination (A, B, C) can be neglected entirely.
This cutoff is available in our code (others can easily be

envisioned) but is used only rarely for energy evaluation, in order
to avoid sacrificing numerical precision for a rather small com-
putational gain overall.
The three-center orthogonalization corrections for OM3 are

formally of first order in overlap. They can be written in matrix
form by expressing the first sum in eq 9 as the sum of the matrix
product S̃β and its transpose;68 the matrix S̃ is the overlap matrix
with the diagonal elements set to zero.25

∑ β β= +μλ
ρ

μρ ρλ μρ ρλ
∈

X S S( )
C (21)

β β= ̃ + ̃S SX ( ) ( )T
(22)

Multiplication of Xμλ with the appropriate prefactor yields the
three-center correction Vμλ,C

ORT for OM3 (eq 9). The use of
optimized library routines for matrix multiplication makes this
approach an extremely efficient alternative to applying cutoffs in
OM3, especially when using graphics processing units (GPUs).68

For a direct comparison of the different implementations, wall
clock computing times were measured for the evaluation of the
OM3 three-center corrections for seven proteins ranging in size
from 1097 to 3558 atoms, using a platform with two Intel Xeon
X5690 CPUs and two NVIDIA Tesla M2090 GPUs.68 The time
for the full explicit calculation on a single CPU core (no GPU)
served as reference. The measured speedups ranged from 14.0 to
18.0 for the explicit calculation with the cutoff τ1 = 10−6, from
8.9 to 13.1 for the evaluation via matrix multiplication (eq 22) on
a single CPU core (no GPU), and from 241 to 351 for the same
evaluation using one CPU core and one GPU.68

In standard MNDO-type methods, the computational effort
for a full SCF energy evaluation is dominated by matrix
operations that scale as O(N3) and need to be performed in each
SCF iteration (diagonalization or pseudodiagonalization of the
Fock matrix to solve eq 2, density matrix computation via eq 4,
and possibly also DIIS extrapolation). In SCF calculations at the
OMx level, the same matrix operations dominate the computa-
tional effort, even though the evaluation of the three-center
orthogonalization corrections in OM2 and OM3 also scales
formally asO(N3); however, this evaluation is required only once
at the beginning to construct the core Hamiltonian (and not
again in each SCF iteration), and it can be made very efficient as
outlined previously. Actual benchmarks on fullerenes up to C960
and on clusters up to 1200 water molecules confirm that the
evaluation of the core Hamiltonian matrix takes only a minor
fraction of the time for a full SCF calculation at the OMx level
less than 10% even in the worst case (largest water cluster, OM2
with full explicit calculation of the three-center orthogonalization
corrections).68,87 In these and other benchmarks, standard
MNDO-type andOMx SCF calculations generally take about the
same time for all systems considered,68 simply because the
dominant matrix operations are the same in both cases. Previous
work achieved substantial speedups of MNDO-type calculations
through shared-memory and distributed-memory message-
passing parallelization of these matrix operations (and of integral
evaluation and Fock matrix construction);73−75,88 these
implementations can be applied likewise at the OMx level.
Finally, MNDO-type and OMx computations benefit from
hybrid CPU-GPU computing in the same manner, with large
speedups of comparable size.68,87 In conclusion, MNDO-type
and OMx SCF calculations on large molecules are essentially
equally fast and equally facile with our current code (for further
detailed timing data on large molecules, see ref 87).
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In semiempirical SCF methods, the energy expression can be
differentiated analytically with respect to the nuclear coor-
dinates.89,90 The resulting analytic gradient expressions contain
integral derivatives that can be evaluated analytically or by finite
difference. In our implementation, the fully analytic approach
is available for MNDO-type methods,89,90 while the integral
derivatives are computed by finite difference for the OMx
methods.37 In closed-shell SCF calculations with MNDO-type
and OMx methods, one may also use a simple finite-difference
procedure that involves computing the change in the energy
at displaced geometries (with constant density matrix and
recalculated values of the integrals that change upon displace-
ment). All these finite-difference techniques are efficient at the
SQC level as long as only two-center integrals need to be treated
(MNDO-type methods and OM1): the computational effort
then scales as O(N2), and gradient evaluation takes only a minor
fraction of the time needed for calculating the energy (typically
much less than 10%).
The situation becomes less favorable in the case of OM2 and

OM3 because of the presence of the three-center orthogonaliza-
tion corrections, which cause an O(N3) scaling of the finite-
difference computation of the corresponding gradient contribu-
tions. Even when care is taken to target only the nonvanishing
contributions, the computational effort increases rapidly with
system size so that it becomes more costly for large systems to
evaluate the gradient than the energy. In this situation, pre-
screening becomes essential for efficiency. In addition to the
test on the ss overlap integrals described previously (cutoff τ1),
our current implementation offers a second test: the contribution
of the atom triple (A, B, C) to the overall three-center
orthogonalization correction is known at the reference geometry
(in terms of energy), and if this is only a small fraction (less than a
cutoff τ2) the corresponding contributions to the gradient can be
neglected safely.
To illustrate the effects of prescreening, we measured wall

clock computing times for OM2 and OM3 calculations on
our seven test proteins (1097−3558 atoms, 2699−8727
basis orbitals) on the same platform as before. Without any
cutoffs, gradient evaluation was slower than energy evaluation
on a single CPU typically by factors of 3−4 (2−3) for OM2
(OM3). Applying the cutoffs τ1 = τ2 = 10−8 led to negligible
changes in the Cartesian gradient norm (typically less than
0.02 kcal/(mol·Å)) while accelerating gradient evaluation on a
single CPU by factors of 17−24 (11−16) for OM2 (OM3) so
that it always took only a fraction of the time needed for energy
evaluation with the same cutoffs (15−27%). On the hybrid
platform with six CPU threads and two GPUs, combined energy
and gradient calculations on the test proteins with the same
cutoffs were faster by factors of 7−10 compared with runs
on a single CPU, both for OM2 and OM3; wall clock times
for the largest protein (3558 atoms) were 1530 (1280) s for
OM2 (OM3).
To summarize, in our current implementation of the three-

center orthogonalization corrections in OM2 and OM3, pre-
screening is not required for computing the energy (particularly
in OM3) but strongly recommended for gradient evaluation in
large systems (default cutoffs, 10−8).
2.4. Parameters. The parameters of the OMxmethods were

optimized by an iterative nonlinear least-squares fitting
procedure, which minimizes the sum-of-squares (SSQ) of the
weighted errors for the chosen properties of reference molecules.
For a given set of trial parameters, the Levenberg−Marquardt
algorithm91,92 was used to define a search vector, and a line

search along this direction was performed to minimize the SSQ
value and thus to determine an improved set of parameters; these
steps were iterated until the SSQ value could not be lowered
further. The Levenberg−Marquardt algorithm was chosen
because it allows for a gradual transition from a steepest descent
procedure at the beginning to a Gauss−Newton method when
approaching the minimum. It requires knowledge of the Jacobi
matrix containing the partial derivatives of the individual errors of
the reference properties with respect to the parameters being
optimized. The Jacobi matrix was computed by finite difference
in the first few iterations and thereafter in regular intervals
to limit the computational effort, with approximate updates in
between. Further technical details on the parametrization pro-
cedure are available in the original reports.24,26,28

The chosen parametrization algorithm provides a derivative-
based method for local optimization of the parameters with
respect to the SSQ value. The parameter surface of SQC
methods is known to be quite rugged, and the optimization can
thus converge to different local minima when starting from
different initial sets of parameters. Therefore, many separate
parametrization runs with different initial conditions were carried
out for each of the OMx methods.24,26,28

Following semiempirical tradition,12 the reference properties
mainly included heats of formation, geometries, ionization
potentials (computed via Koopmans’ theorem), and dipole
moments (computed in ZDO approximation). The weights
were chosen such that the heats of formation contributedmost to
the overall SSQ value (followed by the geometries). For each
of the OMx methods, parametrizations were first run for
hydrocarbons to obtain reasonable CH parameters, which
were then kept fixed in subsequent optimizations of the N
and O parameters. This provided good starting sets for final
simultaneous refinements of all CHNO parameters. The
parameters for F were determined separately (with fixed CHNO
parameters).
The scope of the CHNO parametrization of OM1 (early

1990s), OM2 (mid 1990s), and OM3 (early 2000s) can be
judged from the number of reference molecules employed:
OM1, 10−30 initially, 102 for the last refinement;24 OM2,
35−40 typically;26 and OM3, 227 at the final stage.28 Most
of the reference molecules were taken from the CHNO and
FLUOR training sets of neutral molecules described in the next
section.
For the assessment of the resulting parameter sets, test

calculations were done for other types of molecules (e.g., in the
case of OM3 for radicals, cations, anions, hydrogen-bonded
complexes, and peptides) as well as other properties (e.g.,
vibrational wavenumbers, higher ionization potentials, vertical
excitation energies, transition-state energies, and geometries) to
compare with corresponding reference data from experiment or
from accurate ab initio calculations. In some cases, this motivated
the inclusion of other reference molecules into the training
set.24,26,28

To summarize, the parametrizations of the OMx methods did
not follow a strictly defined protocol, but there were some
common characteristic features. They employed local derivative-
based optimizationmethods, a rather limited number (by current
standards) of reference molecules, and ground-state reference
properties with focus on energies (heats of formation). The
parametrization runs normally yielded several parameter sets
with comparable SSQ values, and hence the selection of the final
parameters involved some subjective judgment taking into
account also the overall performance for other molecules and
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properties not included in the training set. The final parameters
for the OM1, OM2, and OM3 methods are listed in Tables 1−3,
respectively.
Generally speaking, the parameters for a given element can

be classified into five groups: the scale factor for the Gaussian-
type basis functions, the one-center one-electron energies, the
parameters for the resonance integrals, the coefficients for
the orthogonalization corrections, and the parameters for the
semiempirical ECPs in the case of OM2 and OM3.

The exponents of all Gaussian primitives in a given contracted
basis were allowed to be scaled by a common factor ζ2.
The optimized scale factors are generally somewhat larger than
1 indicating some contraction (as also encountered in the
ab initio case for the hydrogen STO-3G basis).
The one-center one-electron energies Uss and Upp are treated

as adjustable parameters in the OMx and MNDO-type methods.
Their optimized values for a given element are generally of
similar magnitude in all methods.

Table 1. OM1 Parameters

H C N O F

Orbital Exponent: Scale Factor
ζ (au) 1.20948930 1.13551142 1.16081665 1.10190209 1.16498140

One-Center One-Electron Energies
Uss (eV) −12.83851861 −50.15945000 −71.33505463 −93.04158571 −121.69518463
Upp (eV) −38.76257345 −56.58315267 −77.59792792 −106.37310634

Resonance Integrals
βs (eV bohr−1/2) −4.89312435 −7.58632270 −12.00586167 −6.22223757 −5.73558167
βp (eV bohr−1/2) −4.49894163 −9.64950408 −9.94028730 −16.36168108
βπ (eV bohr−1/2) −5.91210138 −10.16405908 −11.29342651 −17.22481680
αs (au) 0.09653898 0.09325105 0.10185884 0.10891616 0.19374572
αp (au) 0.05398748 0.08540515 0.09666556 0.13034754
απ (au) 0.10477244 0.14350678 0.15255321 0.22033729
βs(X−H) (eV bohr−1/2) −8.08332477 −6.45960578
βp(X−H) (eV bohr−1/2) −11.48923075 −12.47451386
αs(X−H) (au) 0.07514671 0.07953217
αp(X−H) (au) 0.11556228 0.12908958

Orthogonalization Factors
F1 0.54128873 0.50383851 0.63476395 0.68193417 1.19938976
F2 0.84668969 0.66944409 0.31135759 0.47652748 0.49484369

Table 2. OM2 Parameters

H C N O F

Orbital Exponent: Scale Factor
ζ (au) 1.47386481 1.42036892 1.33175233 1.55214516 1.45216726

One-Center One-Electron Energies
Uss (eV) −12.64890000 −51.65550844 −74.37638240 −101.82723464 −120.62785370
Upp (eV) −39.74369825 −57.60067613 −78.92823923 −107.27105397

Resonance Integrals
βs (eV bohr−1/2) −3.41998220 −7.21406021 −10.84303446 −10.64436974 −6.25438426
βp (eV bohr−1/2) −4.14394503 −7.62373736 −8.63610952 −13.93492471
βπ (eV bohr−1/2) −5.97107657 −9.27936312 −9.21201190 −18.73205761
αs (au) 0.06607903 0.09045297 0.08974553 0.13062089 0.26624434
αp (au) 0.05452192 0.08759680 0.09626876 0.12261412
απ (au) 0.10204903 0.13172314 0.13071747 0.21684388
βs(X−H) (eV bohr−1/2) −6.30164062 −9.49567107 −6.54238767 −6.25104378
βp(X−H) (eV bohr−1/2) −4.04444703 −8.51180846 −10.11307271 −13.94492971
αs(X−H) (au) 0.09668329 0.11429048 0.11112738 0.44713918
αp(X−H) (au) 0.05283694 0.10673732 0.11891861 0.15648906

Orthogonalization Factors
F1 0.29566861 0.49949211 0.64073384 1.26450169 2.11499396
F2 1.40190659 0.72261226 0.19580808 1.14847352 1.09156321
G1 0.65271563 0.21284361 0.13946233 0.28309603 0.31704089
G2 0.90843670 0.99250289 0.84373060 0.78414131 0.02140504

Effective Core Potentials
ζα (au) 5.16802668 6.93980600 7.58579774 8.71226515
Fαα (eV) −305.68646337 −407.39202305 −514.45812327 −685.41988599
βα (eV bohr−1/2) −9.07185084 −9.97910210 −14.16551053 −9.17960365
αα (au) 0.16985745 0.16173024 0.34390559 0.99971548
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The two-center resonance integrals are highly parametrized in
the OMx methods, generally more so than in standard MNDO-
type methods. The relevant parameters are distinguished by the
subscripts s, p, and π assigning them to the s, pσ, and pπ orbitals,
respectively, in the local coordinate system used for evaluating
the resonance integrals. For X−H bonds between a heavy atom
and a hydrogen atom, the OMx formalism allows the use of sepa-
rate heavy-atom parameters, i.e., βs(X−H), βp(X−H), αs(X−H),
and αp(X−H), to enable some fine-tuning if this is deemed to be
desirable for a given element. The various resonance parameters
are interdependent to some extent, and it is therefore difficult to
interpret their optimized values. Meaningful comparisons
are best done by plotting the relevant resonance integrals in
the local diatomic coordinate system as functions of the inter-
atomic distance. Such plots are available and show qualitatively
reasonable behavior both in the bonding region and asymptoti-
cally.24,25,28

The functional form of the orthogonalization corrections
in the OMx methods originates from formal expansions of the
ab initio corrections (arising from symmetric Löwdin orthogon-
alization) in terms of overlap.24−28 The OMx corrections are
scaled by prefactors (e.g., F1, F2, G1, and G2 in OM2) that are
adjusted in the parametrization. Their optimum values are thus
expected to be of the order of 1. While this holds roughly, most of
these values tend to be somewhat smaller.
The parameters for the semiempirical ECPs used in OM2 and

OM3 are listed in Tables 2 and 3, respectively. As expected, the
optimized core orbital exponents ζα are in most cases reasonably
close to the optimum exponent for the corresponding Slater-type
core orbital (i.e., atomic number minus 0.3 to account for partial
screening), and the atomic Fock matrix elements Fαα for the core
orbitals represented by ECPs26,27 adopt optimized values that are
of similar magnitude as the corresponding experimental core
ionization potentials. The core orbital parameters αα and βα
entering the empirical ECP expressions are more difficult to

assess; it is again best to inspect plots of all relevant ECP integrals
to confirm that semiempirical and corresponding ab initio ECP
integrals match reasonably well.26,28

Further details about the parametrizations for the OMx
methods can be found in the original reports.24,26,28

2.5. Validation. Here we provide a brief assessment of the
accuracy of the OMx methods for the standard sets of reference
molecules and reference properties used most regularly for
parametrization (see preceding discussion). These sets are fully
specified in the Supporting Information (Tables S1−S6). The
standard CHNO set consists of 140 molecules containing only
hydrogen, carbon, nitrogen, and/or oxygen; it is similar to the
set used in the original MNDO development in the 1970s.12,13

The standard FLUOR set comprises 48 fluorine-containing
molecules. Both standard sets include only ground-state
reference properties, mainly heats of formation, geometry data
(bond lengths, bond angles, and dihedral angles), first ionization
potentials, and dipole moments.7,24−28,93

Detailed numerical results for all reference molecules and
reference properties are documented in the Supporting
Information (Tables S1−S6) for some of the established
MNDO-type methods (MNDO, AM1, PM3, PM6, and PM7)
and for the OMxmethods (OM1, OM2, and OM3). A statistical
evaluation of these results is given in Tables 4 and 5 for the
CHNO and FLUOR sets, respectively. These tables provide
mean absolute errors for the entire set and for chemically defined
element-specific subsets.
The statistical evaluations suggest the following overall

assessment. For the calculated heats of formation, the mean
absolute errors (MAEs) are lowest overall for the OMxmethods;
the most recent MNDO-type method PM7 that has been fitted
on a much larger data set is closest in accuracy to the OMx
methods, but it has larger outliers (see Figure 1, Supporting
Information Tables S1 and S5). Bond lengths and bond angles
are reproduced similarly well by most SQCmethods investigated

Table 3. OM3 Parameters

H C N O F

Orbital Exponent: Scale Factor
ζ (au) 1.25906452 1.27811536 1.30965521 1.20838191 1.20564838

One-Center One-Electron Energies
Uss (eV) −12.45828647 −50.55997310 −75.98413465 −105.79319826 −120.65477058
Upp (eV) −39.60463506 −57.38630489 −78.90502490 −107.50304443

Resonance Integrals
βs (eV bohr−1/2) −3.40064659 −7.15007507 −13.42485887 −14.42839639 −6.19918959
βp (eV bohr−1/2) −4.00965991 −5.69143961 −8.77114206 −13.82075048
βπ (eV bohr−1/2) −5.63958651 −8.25767437 −12.94995697 −18.96710976
αs (au) 0.06931667 0.09197146 0.09461210 0.12962541 0.31128286
αp (au) 0.05274021 0.06941595 0.09275135 0.12448702
απ (au) 0.09864674 0.10511596 0.16086067 0.21596283
βs(X−H) (eV bohr−1/2) −6.19914817 −11.40440049 −13.56403003 −8.06286638
βp(X−H) (eV bohr−1/2) −4.23218526 −7.87479008 −9.42200507 −13.92380910
αs(X−H) (au) 0.10023679 0.11356707 0.14516313 0.32623663
αp(X−H) (au) 0.05492720 0.09244486 0.10981869 0.15497349

Orthogonalization Factors
F1 0.25393975 0.41151269 0.58223498 0.55266327 1.03522357
G1 0.35600772 0.10398816 0.05928617 0.06226814 0.14035077

Effective Core Potentials
ζα (au) 5.70000000 6.73673665 7.74239776 8.70367110
Fαα(eV) −283.81699000 −380.94261410 −512.51900000 −685.41999336
βα (eV bohr−1/2) −22.48815939 −22.78185605 −26.13251784 −10.62649349
αα (au) 0.15323932 0.15915338 0.18281098 0.00010713
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presently. Ionization potentials are predicted best by OM2 for
the CHNO set and by OM1 and OM2 for the FLUOR set.
Dipole moments are again computed similarly well in general
(please note that the OMx dipole moments are calculated
in ZDO approximation without orthogonalization corrections,
the effect of which should be studied in future work). The
most accurate results for relative energies and barriers are ob-
tained from OM2 and PM7 and from OM2 and OM3, respec-
tively.
Upon the request of a reviewer, we have carried out analogous

RM1 calculations. The statistical evaluations of the RM1 results
are given in the Supporting Information (Tables S11 and S12)
along with a brief assessment. RM1 tends to be generally more

accurate than AM1, about as accurate as the PMx methods, and
somewhat less accurate than the OMx methods.
We have performed extensive benchmarks on many other

validation sets from the literature, to compare the performance of
OMx and MNDO-type methods more systematically. These
benchmarks are reported in a separate Article.69

3. DISPERSION CORRECTIONS

In this section, we discuss the effects of including dispersion
corrections in the OMx methods, without changing any of the
basic OMx parameters presented in Tables 1−3. Contrary to
other recent semiempirical studies (see Introduction), we do not
introduce any hydrogen-bond corrections because the OMx

Table 4. Mean Absolute Errors in Calculated Heats of Formation, Relative Energies and Barriers (kcal/mol), Bond Lengths (Å),
Bond Angles (deg), Ionization Potentials (eV), and Dipole Moments (D) for the CHNO Set and Its Subsets: MNDO, AM1, PMx,
and OMx

method

subset N MNDO AM1 PM3 PM6 PM7 OM1 OM2 OM3

Heats of Formation
overall 140 6.34 5.51 4.17 4.80 3.80 3.46 3.10 3.05
CH 57 5.90 4.89 3.63 4.74 3.50 2.49 1.72 1.63
CHN 32 6.24 4.65 5.02 4.30 4.11 4.27 3.92 3.80
CHO 39 4.80 5.54 3.69 4.53 3.42 3.41 4.53 4.20
CHNO 4 13.52 8.36 3.00 2.59 1.48 6.18 1.96 3.24
HNO 8 13.73 11.93 7.54 9.63 7.71 5.94 3.28 4.53

Bond Lengths
overall 242 0.014 0.017 0.011 0.012 0.011 0.012 0.016 0.019
CH 113 0.011 0.013 0.011 0.009 0.009 0.012 0.010 0.009
CHN 49 0.011 0.015 0.010 0.010 0.009 0.009 0.015 0.027
CHO 57 0.017 0.019 0.011 0.013 0.011 0.013 0.018 0.022
CHNO 5 0.015 0.017 0.016 0.011 0.010 0.013 0.018 0.033
HNO 18 0.036 0.038 0.016 0.036 0.036 0.019 0.049 0.043

Bond Angles
overall 101 2.56 1.90 2.08 2.14 2.31 1.82 2.24 1.85
CH 38 1.81 1.36 1.57 1.64 1.88 1.45 1.46 1.23
CHN 22 2.03 1.86 2.04 1.86 2.04 1.85 2.30 1.82
CHO 31 3.11 2.17 2.43 2.38 2.69 1.95 2.45 2.03
HNO 10 4.83 3.17 3.04 3.91 3.30 2.76 4.42 3.76

Ionization Potentials
overall 52 0.46 0.36 0.42 0.45 0.42 0.32 0.26 0.44
CH 22 0.38 0.27 0.34 0.31 0.37 0.24 0.24 0.37
CHN 13 0.54 0.37 0.52 0.53 0.52 0.33 0.22 0.39
CHO 14 0.57 0.45 0.51 0.48 0.41 0.41 0.34 0.61
HNO 3 0.24 0.52 0.16 0.96 0.52 0.33 0.23 0.45

Dipole Moments
overall 63 0.36 0.24 0.28 0.38 0.38 0.23 0.25 0.26
CH 20 0.30 0.16 0.16 0.24 0.24 0.08 0.11 0.10
CHN 16 0.54 0.48 0.39 0.54 0.54 0.40 0.27 0.33
CHO 19 0.22 0.10 0.25 0.39 0.33 0.23 0.31 0.26
HNO 6 0.40 0.32 0.31 0.38 0.56 0.31 0.49 0.58

Relative Energies
overall 17 9.01 5.70 4.17 2.97 1.97 5.25 1.96 2.83
CH 9 4.34 2.62 1.83 1.19 1.39 3.20 0.52 1.08
CHN 3 9.48 7.37 4.71 2.91 2.17 6.04 4.09 5.65
CHO 3 13.22 7.78 9.30 4.17 3.41 6.63 3.63 3.91

Barriers
overall 60 3.48 2.12 3.01 2.55 2.46 2.31 1.63 1.61
CH 20 4.27 3.31 3.25 3.65 3.32 2.37 1.69 2.01
CHN 10 3.20 1.32 3.17 3.39 3.17 3.03 1.91 1.51
CHO 25 2.42 1.42 2.07 1.46 1.56 1.61 1.50 1.45
CHNO 3 7.98 3.16 7.70 2.35 2.46 5.42 1.43 0.68
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methods normally describe hydrogen bonds already quite well by
themselves, even though further improvements can be achieved
by specific re-parameterization.94 We have previously shown
that simple dispersion-corrected OM2 and OM3 approaches
are capable of yielding acceptable results for hydrogen-bonded
complexes.67

The functional form of the dispersion corrections is taken
from the work by Grimme, specifically from DFT-D256

and DFT-D3(BJ).57,58 Our notation is as follows: D2 is
used for re-parametrized versions of the DFT-D2 corrections,56

while D3 denotes the parametrization of the DFT-D3(BJ)
correction57,58 that has recently been performed by Grimme for

Table 5. Mean Absolute Errors in Calculated Heats of Formation (kcal/mol), Bond Lengths (Å), Bond Angles (deg), Ionization
Potentials (eV), and Dipole Moments (D) for the FLUOR Set and Its Subsets: MNDO, AM1, PMx, and OMx

method

subset N MNDO AM1 PM3 PM6 PM7 OM1 OM2 OM3

Heats of Formation
overall 48 10.81 7.75 5.87 5.21 5.82 4.92 3.41 3.70
CHF 39 9.89 7.37 4.96 4.92 5.57 3.67 3.72 3.88
HNOF 9 14.79 9.42 9.81 6.48 6.90 10.32 2.08 2.93

Bond Lengths
overall 125 0.037 0.028 0.022 0.016 0.017 0.020 0.023 0.024
CHF 104 0.030 0.026 0.020 0.014 0.015 0.018 0.019 0.021
CHNOF 3 0.029 0.052 0.021 0.013 0.017 0.024 0.020 0.014
HNOF 17 0.080 0.037 0.037 0.026 0.026 0.032 0.043 0.044

Bond Angles
overall 69 3.00 3.16 2.75 2.76 2.55 1.97 2.23 1.78
CHF 56 2.59 2.93 2.69 2.64 2.45 1.88 2.06 1.61
CHNOF 3 2.89 3.76 3.41 3.76 2.61 1.30 2.44 1.75
HNOF 9 5.56 4.59 3.05 3.50 3.37 2.43 2.91 2.68

Ionization Potentials
overall 39 0.34 0.53 0.39 0.50 0.46 0.23 0.26 0.32
CHF 29 0.33 0.47 0.32 0.36 0.40 0.20 0.25 0.29
HNOF 9 0.38 0.70 0.57 1.00 0.68 0.30 0.29 0.42

Dipole Moments
overall 39 0.38 0.31 0.29 0.33 0.29 0.27 0.31 0.25
CHF 30 0.41 0.29 0.25 0.31 0.26 0.31 0.33 0.24
HNOF 8 0.29 0.44 0.47 0.42 0.41 0.15 0.26 0.29

Figure 1. Error distribution for the heats of formation from OMx and PM7 calculations on the CHNO set. The CH, CHN, CHO, CHNO, and HNO
subsets are shown in this order from left to right and are marked with alternating gray and white backgrounds.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b01046
J. Chem. Theory Comput. 2016, 12, 1082−1096

1091

http://dx.doi.org/10.1021/acs.jctc.5b01046


OM2 and OM3.10 The dispersion corrections are added to the
SCF energy. For ease of reference, we first outline the relevant
formalism before presenting the results.
3.1. D2 Corrections. The D2 dispersion correction Edisp

D2 is
given by56,68

∑= −
<

E s
C
R

f R( )
A B AB

ABdisp
D2

6
6
AB

6 damp
(23)

Here RAB is the distance between atoms A and B, C6
AB is the cor-

responding dispersion coefficient, s6 is an element-independent
(global) scale factor, and fdamp(RAB) is a damping function that
avoids an unphysical overbinding between atomsA and B that are
very close to each other. The cross-terms C6

AB are obtained from

=C C C6
AB

6
A

6
B

(24)

where C6
A and C6

B are atomic coefficients derived from the
London dispersion formula. The damping function fdamp(RAB) is
defined by56,68

=
+ − + −

f R( )
1

1 e
AB d R R Rdamp [ /( ) 1]AB 0

A
0
B

(25)

where R0 is an element-specific parameter that represents the
van derWaals radius,56 and d is an element-independent (global)
parameter that determines the steepness of the damping
function.55 Tests of an alternative damping function95 in the
OMx-D2 framework yield results close to those obtained with
the aforementioned standard DFT-D2 damping function;68 for
the sake of brevity, we only present and discuss the latter in the
following sections.
3.2. D3 Corrections. Recently, Risthaus and Grimme

derived and successfully applied D3(BJ) corrections to OM2
and OM3.10 The resulting dispersion-corrected methods are
labeled as OM2-D3 andOM3-D3 both in the original work10 and
here. The D3(BJ) corrections are defined by58

∑= −
+

+
+<

⎡
⎣⎢

⎤
⎦⎥E s
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R f R

s
C

R f R( ) ( )A B AB AB

AB

AB AB
disp
D3(BJ)

6
6
AB

6 0 6 8
8

8 0 8

(26)

where s6 and s8 are element-independent (global) parameters,
C6
AB and C8

AB are dispersion parameters, and f(RAB) denotes the
Becke−Johnson-type (BJ) damping function96−98 that contains
adjustable parameters a1 and a2. The dispersion coefficients C6

AB

are derived from TD-DFT calculations of average dipole
polarizabilities.57 The dispersion coefficients C8

AB are obtained
recursively from C6

AB and DFT-derived quantities.57

Risthaus and Grimme10 also applied three-body dispersion
corrections (Edisp

ABC)57 on top of the preceding two-body correc-
tions. These three-body corrections are important for large dense
systems.99,100 They are defined explicitly in the literature.10,57

Inclusion of the Edisp
ABC corrections has been shown to improve

the accuracy of OM2-D3 and OM3-D3 noncovalent interaction
energies of large complexes on average by 1.4 kcal/mol10 but is
expected to have little effect on smaller systems.10,100 We denote
OM2-D3 and OM3-D3 calculations that include three-body
corrections by OM2-D3T and OM3-D3T, respectively.
3.3. Parameters. The global parameters s6 and d as well as

the element-specific parameters C6 and R0 that appear in the D2
dispersion corrections were fitted by optimizing the complexes of
the S22 benchmark set101,102 and using the respective reference
interaction energies.68 During this fitting, C6 and R0 were not
allowed to change by more than 10% to ensure that they retain

their physical meaning.68 The resulting element-specific param-
eters for H, C, N, and O do not differ significantly from the
respective DFT-D2 parameters,56,68 and therefore we decided to
adopt for F the published DFT-D2 parameters (note that there
are no fluorine-containing complexes in the S22 set). The final
D2 parameters are listed in Table 6.

The OM2-D3 and OM3-D3 parameters are taken from the
literature.10 As commonly done, s6 was fixed to unity,10,58 while
the short-range D3(BJ) parameters (a1, a2, and s8) were fitted
against reference data from the S66×8103 set.10 The optimized
D3 parameters are included in Table 6.

3.4. Validation.Here we provide an initial assessment of the
dispersion-corrected OMx-Dn results for the S22 and S66×8
training sets used during parametrization. Extensive further
benchmarks have been performed for several other test sets,
which will be reported in a separate Article.69

The S22 set is comprised of 22 small noncovalently bound
complexes. Most of the reference geometries were obtained at
the MP2/cc-pVTZ level with counterpoise corrections, and
some also at the CCSD(T) level without counterpoise correc-
tions.101,102 The standard S22 reference energies have been
updated in this study by including more accurate CCSD(T)/
CBS values.104 The S66×8 set samples intermolecular distances
in 66 small noncovalently bound complexes, which were opti-
mized at the MP2/cc-pVTZ level with counterpoise correc-
tions;103 thereafter the equilibrium distance between the
monomers was scaled by factors of 0.9, 0.95, 1.05, 1.1, 1.25,
1.5, and 2.0, and reference energies were calculated at the
CCSD(T)/CBS level for the resulting eight geometries.103 In
both sets, the complexes are divided into three types:
electrostatics-dominated (hydrogen bonded), dispersion-domi-
nated, and mixed electrostatics/dispersion.101,103

We performed single-point calculations at the reference
geometries in order to be able to compare the results from
different methods. Detailed numerical results are documented in
the Supporting Information (Tables S9 and S10) for MNDO-
type methods (MNDO, AM1, PM3, PM6, and PM7), for the
OMxmethods (OM1, OM2, and OM3), and in the case of OM2

Table 6. Parameters for the D2 and D3 Dispersion
Corrections for OM2 and OM3: s6, s8, a1, a2, d, C6
(J·nm6·mol−1), and R0 (nm) (See Text)

aTaken from ref 68. bTaken from ref 56., see text. cTaken from ref 10.
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and OM3 also for the dispersion-corrected variants (D2, D3, and
D3T). Statistical evaluations are given in Table 7 for the PM7 and
OMx-Dn methods and in Supporting Information Table S7 for
the other SQC methods. These tables provide mean absolute
errors of the interaction energies for the S22 and S66×8 sets and
for the corresponding subsets.
In the case of the S22 set, the overall mean absolute error

(MAE) is lowest for PM7 (0.76 kcal/mol); the corresponding
MAEs for the OMx-Dn methods are slightly higher by 0.15−
0.49 kcal/mol. However, the latter are more accurate for the
dispersion-dominated and mixed-type complexes, with MAEs of
0.27−0.47 kcal/mol for OM2-D3 and OM3-D3. The largest
outlier in the OMx-Dn results is the interaction energy of formic
acid dimer which is underestimated by 3.96−5.87 kcal/mol.
Similar trends are found for the interaction energies in the

S66×8 set. The overall MAEs for PM7, OM2-D3, and OM3-D3
are close to each other (0.73, 0.78, and 0.69 kcal/mol,
respectively), and the OMx-Dn methods again outperform
PM7 for dispersion-dominated and mixed-type complexes. The
largest outlier in the OMx-Dn results is the interaction energy of
acetic acid dimer which is underestimated by up to 7.0 kcal/mol.
Since all complexes in the S22 and S66×8 sets are quite small,

it is not surprising that the role of the three-body corrections is
negligible (see the D3 and D3T results).
To check the quality of geometry predictions for these

noncovalent complexes, we performed full geometry optimiza-
tions for the S22 set at the PM7 and OMx-Dn levels and
compared the results for 105 selected interatomic distances and
for 14 selected bond angles with the ab initio reference values.68

Statistical evaluation of the results are given in Table 8 for the
PM7 and OMx-Dn methods and in Supporting Information
Table S8 for other SQCmethods. It is obvious that the MAEs for
the selected distances and angles are quite large for all SQC

methods investigated presently. Still, the MAEs are significantly
lower for the OMx-Dn methods than for PM7 (see Table 8).
For most of the complexes of the S22 set, the PM7 and

OMx-Dn methods give qualitatively correct geometry predic-
tions, but there are also cases of failure in which some of the
investigated SQC methods yield a qualitatively wrong structure.
For example, the reference conformation of the methane dimer is
well-reproduced by the OM3-Dn methods but not by OM2-D2
and PM7 (Supporting Information Figure S1). The reference
geometry of the T-shaped benzene dimer is predicted correctly
by OM2-D2 and OM2-D3, while optimizations with OM3-Dn
yield other types of conformers including some that resemble the
parallel displaced structure (Supporting Information Figure S2).
The optimization of the stacked indole···benzene complex leads
to a reasonable structure with PM7, whereas OMx-Dn give a
conformer in which benzene is too strongly shifted compared
with the reference geometry (Supporting Information Figure S3)
For the T-shaped indole···benzene complex, similar problems are
encountered as in the case of the T-shaped benzene dimer: for
example, optimizations at the OM3-Dn levels lead to a stacked
geometry (Supporting Information Figure S4). Finally, in the
case of the hydrogen-bonded formic acid dimer, the reference,
PM7, and OM2-Dn geometries are similar (with each of the
monomers containing an O−H bond), whereas geometry opti-
mizations with OM3 and OM3-Dn converge to a cyclic D2h
structure with a symmetric hydrogen bond characterized by
equal O−H distances toward both monomers (Supporting
Information Figure S5).
Although the three-body corrections are generally small for

the S22 set, their inclusion in the OM2-D3T optimization of
the T-shaped benzene dimer produces another conformer of the
dimer (Supporting Information Figure S2). This causes the
outlier in the MAE value for the OM2-D3T distances, which is
much higher than that for OM2-D3 (Table 8).

Table 7. Mean Absolute Errors of the Interaction Energies (kcal/mol) for the S22 and S66×8 Benchmark Sets from Single-Point
PM7 and OMx-Dn Calculations at the Reference Geometries

method

OM2 OM3

subset N PM7 D2 D3 D3T D2 D3 D3T

S22
overall 22 0.76 1.16 0.91 0.94 1.25 0.99 0.97
hydrogen bonded 7 0.73 2.32 2.17 2.15 2.65 2.30 2.28
mixed 7 0.70 0.40 0.27 0.28 0.79 0.47 0.50
dispersion 8 0.85 0.81 0.36 0.47 0.44 0.29 0.24

S66×8
overall 528 0.73 0.96 0.78 0.79 0.88 0.69 0.71
electrostatic 184 0.91 1.54 1.43 1.43 1.48 1.30 1.30
mixed 160 0.55 0.52 0.37 0.37 0.53 0.33 0.34
dispersion 184 0.69 0.77 0.49 0.52 0.59 0.41 0.43

Table 8. Mean Absolute Errors in Selected Interatomic Distances (Å) and Angles (deg) from PM7 and OMx-Dn Optimizations
for the S22 Set

method

OM2 OM3

subset N PM7 D2 D3 D3T D2 D3 D3T

Selected Interatomic Distances
overall 105 0.565 0.287 0.281 0.424 0.265 0.281 0.285

Selected Angles
overall 14 10.76 2.47 2.63 2.60 1.08 0.86 0.85
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4. COMPUTATIONAL DETAILS

All MNDO, AM1, PM3, and OMx calculations were carried out
with our locally modified MNDO2005 program,105 while the
PM6, PM7, and RM1 calculations were done with the
MOPAC2012 program.106,107 Molecules were visualized with
Chemcraft 1.7.108

The SCF energy convergence criterion was set to 10−9 eV.
In addition, the diagonal elements of the density matrix were
required to change by less than 10−9 to achieve SCF convergence
in MNDO2005.
By default, geometry optimizations were performed until

the gradient norm was smaller than 0.01 kcal/(mol·Å). The
optimizations employed the BFGS algorithm inMNDO2005 and
the eigenvector following method in MOPAC2012. In the latter
case, the full Hessian matrix was constructed using single-sided
derivatives and recalculated every 10 steps. In many cases,
MOPAC2012 stopped when the heat of formation remained
essentially constant. In these cases the gradient norm was usually
still smaller than 0.1 kcal/(mol·Å).
Open-shell systems up to triplet spin state were treated with

the half-electron approach.109 Molecular mechanics corrections
for PM6 and PM7 were not used. No cutoffs were applied for
the three-center orthogonalization corrections in OMx and
OMx-Dn calculations.
D3 dispersion corrections were implemented into the

MNDO2005 program by adapting code from the DFT-D3
stand-alone program by Grimme (version 3.0 Rev 2).110 The D3
corrections were computed using Becke−Johnson damping and
default cutoffs (95 au for two-body terms and 40 au for coordi-
nation numbers). The D3T three-body terms were implemented
starting from version 3.1 Rev 0 of the same program;110 in this
case, we increased the default cutoffs (95 au for two-body terms,
coordination numbers, and three-body terms) which had almost
no impact on computation times.

5. CONCLUSIONS

In previous work we have introduced orthogonalization-
corrected SQC methods (OM1, OM2, and OM3) and applied
them in various studies, especially in the area of excited-state
dynamics. The OMx methods go beyond the MNDO model by
including orthogonalization terms, penetration integrals, and
ECP integrals in the Fock matrix. In this Article, we describe the
underlying theoretical formalism and its implementation in full
detail and report all relevant parameters.
The performance of the OMx methods for ground-state

properties is demonstrated for a standard set of molecules that
has commonly been used in semiempirical method development.
In the majority of cases, the OMx results are found to be superior
to those from established MNDO-type methods. Further
extensive benchmarks have been carried out and are reported
separately.69

Dispersion interactions are not covered in the OMx formalism
but need to be included for a realistic description of noncovalent
interactions. This has been done by adding parametrized
Grimme-type dispersion corrections to OM2 and OM3 energies
(computed without changing the standard OM2 and OM3
parameters). This treatment provides a much improved
description of noncovalent interactions in the established S22
and S66×8 test sets. Further advances may be possible by a full
reparametrization of the OM2-D3 and OM3-D3 approaches
(work in progress).
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(63) Řezać,̌ J.; Hobza, P. J. Chem. Theory Comput. 2012, 8, 141−151.
(64) Grimme, S. Chem. - Eur. J. 2012, 18, 9955−9964.

(65) Kromann, J. C.; Christensen, A.; Steinmann, C.; Korth, M.;
Jensen, J. H. PeerJ 2014, 2, e449.
(66) Yilmazer, N. D.; Korth, M. Comput. Struct. Biotechnol. J. 2015, 13,
169−175.
(67) Tuttle, T.; Thiel, W. Phys. Chem. Chem. Phys. 2008, 10, 2159−
2166.
(68)Wu, X. Semiempirical QuantumChemistry onHigh-Performance
Heterogeneous Computers. Ph.D. thesis, Universitaẗ Düsseldorf,
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