# Säuren & Basen

### **Definitionen:**

- Säure: - Gibt Protonen ab → Protonendonator

- bildet in wässriger Lösung H⁺-Ionen.

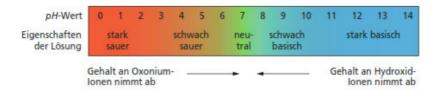
- Base: - Nimmt Protonen auf → Protonenakzeptor

- bildet in wässriger Lösung OH<sup>-</sup>Ionen.

- Ampholyt: - Moleküle und Ionen, die sowohl als Säuren wie auch als Basen auftreten können

## pH & pOH:

Säuren geben in Wasser Protonen ab. Das H<sub>2</sub>O nimmt dieses auf und bildet ein H<sub>3</sub>O<sup>+</sup>-Ion.


- pH: Der Säuregrad kann man anhand der Konzentration von  $H_3O^+$  messen. pH=log(c( $H_3O^+$ ))

- pOH: Der Basengehalt kann man anhand der Konzentration von OH messen. pOH=log(c(OH ))

-  $pH + pOH = pK_W = 14$ 

- Ionenprodukt von Wasser:  $K_W = 10^{-14} \text{ mol}^2/l^2 = c(H_3O^+) \times c(OH^-)$ 

| рΗ | = -lg c(H <sub>3</sub> O+)                                  | Konzentration                                         | en in mol·l⁻¹ –lg                       | $c(OH^-) = pOH$ |
|----|-------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|-----------------|
| 0  | 1 molare HCl                                                | $c(H_3O^+) = 10^0$                                    | c(OH <sup>-</sup> ) = 10 <sup>-14</sup> | 14              |
| 1  | 0,1 molare HCl                                              | $c(H_3O^+) = 10^{-1}$                                 | $c(OH^{-}) = 10^{-13}$                  | 13              |
| 2  | 0,01 molare HCl                                             | $c(H_3O^+) = 10^{-2}$                                 | $c(OH^{-}) = 10^{-12}$                  | 12              |
| 3  | 0,001 molare HCl                                            | $cH_3O^+) = 10^{-3}$                                  | $c(OH^{-}) = 10^{-11}$                  | 11              |
|    |                                                             |                                                       |                                         |                 |
| 7  | Neutralpunkt, reines Wasser $c(H_3O^+) = c(OH^-) = 10^{-7}$ |                                                       |                                         | 7               |
|    |                                                             |                                                       |                                         |                 |
| 12 | 0,01 molare NaOH                                            | c(H <sub>3</sub> O <sup>+</sup> ) = 10 <sup>-12</sup> | $c(OH^{-}) = 10^{-2}$                   | 2               |
| 13 | 0,1 molare NaOH                                             | $c(H_3O^+) = 10^{-13}$                                | c(OH <sup>-</sup> ) = 10 <sup>-1</sup>  | 1               |



### Korrespondierendes Gleichgewicht:



K=Gleichgewichtskonstante in Wasser:

$$K = \frac{c(\mathsf{H}_3\mathsf{O}^+) \cdot c(\mathsf{OH}^-)}{c(\mathsf{H}_2\mathsf{O}) \cdot c(\mathsf{H}_2\mathsf{O})} = \frac{c(\mathsf{H}_3\mathsf{O}^+) \cdot c(\mathsf{OH}^-)}{c^2(\mathsf{H}_2\mathsf{O})}$$

Stärke von Säuren und Basen:

$$K \cdot c(H_2O) = \frac{c(H_3O^+) \cdot c(A^-)}{c(HA)} = K_S$$

Säuren:

$$HA + H_2O \longrightarrow H_3O^+ + A^-$$

$$K_S = \frac{c(H_3O^+) \cdot c(A^-)}{c(HA)}$$

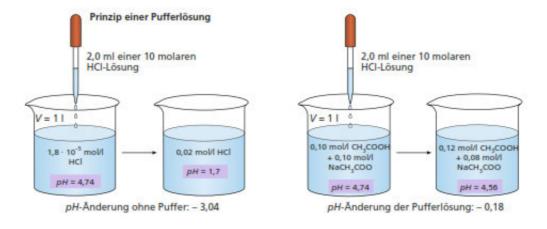
$$pK_S = -Ig K_S$$

Basen:

$$B + H_2O \longrightarrow BH^+ + OH^-$$

$$K_B = \frac{c(BH^+) \cdot c(OH^-)}{c(B)}$$

$$\rho K_B = -Ig K_B$$


## Pufferlösungen:

Sie sorgen dafür, dass der pH-Wert weitgehend konstant gehalten wird, auch wenn Säuren oder Basen zugegeben werden.

Puffergemische müssen stets zwei Substanzen enthalten:

- Eine Base, die mit H₃O<sup>+</sup>-Ionen reagiert.
- Eine Säure, die mit OH<sup>-</sup>Ionen reagiert.

Diese beiden Substanzen dürfen nicht miteinander reagieren. Denn sonst gibt es natürlich keinen Puffereffekt mehr.



Berechnung von pH-Werten in Puffersystemen:

$$pH = pK_S - \lg \frac{c(HA)}{c(A^-)}$$
 oder  $pH = pK_S + \lg \frac{c(A^-)}{c(HA)}$