Radioaktivität by R. Steiger

1. Frage (je 1 Punkt)

- a) Was ist ein Isotop?
- b) Wie erzeugt man künstlich radioaktive Elemente?
- c) Was bedeutet Halbwertszeit?
- d) Erkläre, wie der Massendefekt zustande kommt.
- e) Worin unterscheidet sich die Kernfusion von der Kernspaltung?

2. Frage: (je 2 Punkte)

- a) Welches sind die vier Kräfte der Natur und beschreibe sie kurz!
- b) Woher kommt die natürliche Strahlenbelastung und wie gross ist sie?

3. Frage: (je 1 Punkt)

- a) Erkläre die Altersbestimmung mittels der ¹⁴C-Methode!
- b) Wie lange dauert es, damit von 1 kg radioaktiver Substanz nur mehr 1 g übrig ist?
- c) Wie lange dauert es, damit von 1 g radioaktiver Substanz schon 0.75 g umgewandelt sind?

4. Frage: (je 0.5 Punkte)

Der β^+ -Zerfall (Aufgabe f)) ist folgendermassen definiert: ${}_1^1p \rightarrow {}_0^1n + {}_1^0e$

Ergänze folgende Zerfallsreihen, wobei die Buchstaben A, B etc. durch die korrekten Elemente ersetzt werden müssen:

a)
$$^{210}_{82}$$
 Pb $\overset{\beta^-}{\rightarrow}$ A b) $^{218}_{84}$ Po $\overset{\beta^-}{\rightarrow}$ B c) $^{218}_{84}$ Po $\overset{\alpha}{\rightarrow}$ C d) $^{214}_{83}$ Bi $\overset{\alpha}{\rightarrow}$ D e) $^{214}_{83}$ Bi $\overset{\beta^-}{\rightarrow}$ E

f)
$$^{30}_{16}$$
 S $\xrightarrow{\beta^+}$ F $\xrightarrow{\beta^+}$ G

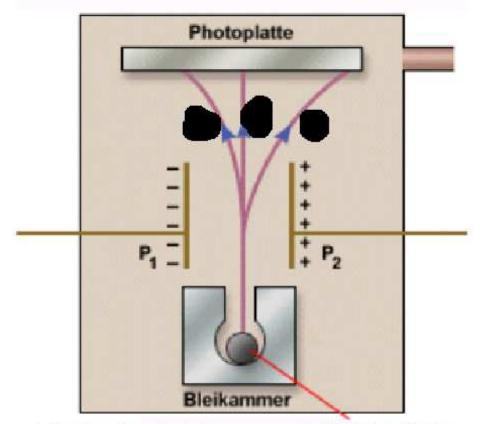
5. Frage: (je 1 Punkt)

Jedes der folgenden Nuklide ist ein Spaltprodukt von $^{235}_{92}$ U, ausserdem entstehen jeweils zwei Neutronen. Welches ist jeweils das andere Spaltprodukt?

a)
$$^{148}_{58}$$
 Ce b) $^{121}_{47}$ Ag

6. Frage (je 1 Punkt)

Beschreibe in wenigen Worten (maximal 3 Sätze sollten genügen) folgende Begriffe:


- a) Dampfblasenkoeffizient
- b) Moderator
- c) Brennstab
- d) Reaktor

7. Frage: (je 1.5 Punkt)

Auf der Abbildung der Rückseite sind die drei Strahlentypen und ihre Ablenkung in einem elektrischen Feld ersichtlich.

- a) Gib an, welche Bahn der α , β und γ -Strahlung entspricht
- b) Gib genau an, wieso und wie die verschiedenen Strahlungen abgelenkt werden.

α , β und γ - Strahlung

P1, P2 = Metallplatten

radioaktive Probe