TigerJython: Übersicht, Zusammenfassung, Beispiele

VERGLEICH MIT TI-BASIC

	TigerJython	TI-Basic (TI-89)
Eingabe	<pre>x = input("Zahl") z = inputInt("ganze Zahl")</pre>	input "Zahl",x
Ausgabe	print "hallo" print 5*z	disp "hallo" disp 5*z
	print "Die Zahl ist ",z msgDlg("Zahl ist " + str(z))	disp "Die Zahl ist ",z text "Zahl ist "&string(z)
Kommentar	# Kommentar	
Rechnen Potenz	+ - * / () a**3	+ - * / () a^3
Grosse Zahlen	c = 2.998e8	i-1-1-(- b)
ganzzahlige Div. Rest	a//b a%b	<pre>intdiv(a,b) mod(a,b)</pre>
Mathematische Funktionen	from math import * sin(sqrt(z*pi))	$sin(\sqrt{(z^*\pi)})$
Trigonometrie	<pre>sin, cos, tan asin, acos, atan # immer im Bogenmass radians(30), degrees(pi)</pre>	sin, cos, tan sin ⁻¹ , cos ⁻¹ , tan ⁻¹ • Winkelmasseinheit je • nach Einstellung
Undefinierte Werte	from math import * isnan(x)	
Runden	round(z,2)	round(z,2)
Zufallszahl	<pre>from random import * randint(1,6) random()</pre>	rand(6) rand()
Wert zuweisen	a, b = 2, 5 c = a+b	2 STO a 5 STO b a+b STO c
Wert erhöhen	x += 1	x+1 STO x
	s += k**2 +=, -=, *=, /=, //=, %=	s+k^2 STO s
logische Op.	And or not	and or not
Test: gleich?	A == b	a=b
Test: ungleich?	A != b	a/=b <, >, <=, >=

Logische Werte	True, False	true, false
Bedingung	if x<0:	if x<0 then
	print "Zahl ist negativ"	disp "Zahl ist negativ"
	elif x>0:	elseif x>0 then
	print "Zahl ist positiv"	disp "Zahl ist positiv"
	else:	else
	print "Zahl ist 0"	disp "Zahl ist 0"
		endif
Schleifen	while a <b:< td=""><td>while a<b< td=""></b<></td></b:<>	while a <b< td=""></b<>
	a += 1	a+1 STO a
		endwhile
	for i in range(5,n):	for i,5,n
	summe += i	summe + i STO summe
	<pre># range(0,10,2): 2er-Schritte</pre>	endfor
Repeat gibt's nur in	repeat 10:	loop
TigerJython!	s += 1	endloop
Abbruch einer Schleife	break	exit
Funktion	def potenz(base, expo)	potenz(base,expo)
	return base**expo	func
		return base^expo
		endfunc
Globale Variablen	# innerhalb einer Funktion	• Nicht speziell dekla-
	global phi	• rierte Variablen sind
	phi = (5**0.5 + 1)/2	● immer lokal
Lokale Variablen	# Nicht speziell deklarierte	• innerhalb einer Funktion
	# Variablen in einer Fu.	local phi
	# sind immer lokal	(5^0.5 + 1)/2 STO phi
Befehl über mehrere	# eigentlich unnötig, aber \	• automatisch
Zeilen schreiben	mit "\" trotzdem möglich	& automatisen

VARIABLENARTEN IN TIGERJYTHON

Ganze Zahl (Integer)	z = inputInt("ganze Zahl")
Guillo Luin (integer)	int(ni)
Grosse Ganzzahl (Long)	# Anzeige mit "L" am Schluss
Dezimalzahl (Float)	x = inputFloat("Dezimalzahl")
Sozimarzam (1 loat)	float(5)
	c = 2.9979e8
Zeichenkette (String)	t = inputString("Text eingeben")
Gross-/ Kleinbuchstaben erzeugen	t.upper(), t.lower()
Länge abfragen	len(t)
Erster Buchstabe	t[0]
Letzte vier Buchstaben	t[len(t)-5: len(t)-1]
ASCII-Code (Unicode)	ord("x"), chr(65)
Zeilenumbruch im Text	\n
Stelle in Text finden	t.index("bla")
Text aufspalten (ergibt Liste)	t.split("x")
Text ersetzen	t.replace("x", "xox")
Daten einfügen	<pre>print "{0} {1} {2}".format("Hallo", "du", "da")</pre>
Liste (Array)	day = ["mo", "di", "mi", "do", "fr", "sa", "so"]
Liste aufeinanderfolgender Zahlen	<pre>ziffern = range(10) # oder range(0, 10)</pre>
Arithmetische Folge	even = range(0, 10, 2)
Listenelement abrufen	day[2] # gibt drittes Element
oder	day[-2] # gibt zweitletztes Element
Listenelement ändern	day[1] = "tue"
Listenelement löschen	del day[6]
Listenelement hinten hinzufügen	day.append("sun")
ganze Liste löschen	del ziffern
Test, ob El. in Liste ist	"sun" in day
Elementnummer finden	day.index("sun")
aufsteigend sortieren	day.sort()
absteigend sortieren	day.reverse()
grösstes Element	max(ziffern)
kleinstes Element	min(ziffern)
Länge der Liste	len(day)
Summe der Elemente	sum(ziffern)
Matrix erzeugen	unitmatrix = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
Element a ₂₃ abrufen	unitmatrix[1][2]

Siehe auch http://docs.python.org/3/tutorial/, Kapitel 3 und 5

TURTLE-GRAFIK IN TIGERJYTHON

Turtle bzw. Fenster erstellen	from gturtle import *
$(-400 \le x \le 400, -300 \le y \le 300)$	makeTurtle()
Linie und Punkt	forward(s), dot(d)
Drehen	right(w), left(w)
	<pre>penUp(), penDown()</pre>
	hideTurtle(), showTurtle()
	setLineWidth(w), penWidth(w)
Turtle ausrichten (0 = Nord)	heading(winkel)
Geschwindigkeit (min max.)	speed(0), speed(20), speed(100), speed(-1)
Bekannte Farbe verwenden	setPenColor(« blue »)
Fläche füllen	setFillColor("blue"), fill()
	fillToPoint(), fillOff()
Ganzes Fenster füllen	clear("blue")
Farbe mischen	makeColor(r,g,b)
Farbe verwenden	setPenColor(makeColor(r,g,b))
Linie mittels Koordinaten	setPos(x, y), moveTo(x, y)
Punkt mittels Koordinaten	setPos(x, y), dot(d)
Koordinaten abfragen	getX(), getY()
Aktion bei Mausklick (Text	<pre>def click(x, y):</pre>
schreiben)	setPos(x, y)
	label("Hallo du!")
	makeTurtle(mouseHit = click)
Aktion bei Mausklick erst, wenn die vorher laufende Aktion beendet ist	<pre>makeTurtle(mouseHitX = click)</pre>
Aktion beim Ziehen der Maus	def drag(e):
	<pre>x = toTurtleX(e.getX())</pre>
	<pre>y = toTurtleY(e.getY())</pre>
	moveTo(x, y)
	makeTurtle(mouseDragged = drag)
Verschiedene Aktionen mit Maus	makeTurtle(mousePressed = press,
	<pre>mouseReleased = release, mouseClicked = click</pre>
	mouseMoved = move)
Cursor-Form verändern	setCursor(Cursor.DEFAULT_CURSOR)
Caroor Form verandent	setCursor(Cursor.CROSSHAIR_CURSOR)
	setCursor(Cursor.HAND_CURSOR)
	setCursor(Cursor.TEXT_CURSOR)

Bessere (schnellere) Grafik mit dem TigerJython-Modul **gpanel** von Aegidius Plüss Tutorial auf <u>www.tigerjython.ch</u>, Kapitel "Grafik & Bilder"

SPEZIELLE MODULE IN TIGERJYTHON

Importarten	<pre>from math import * sin(x) # oder import math</pre>
	math.sin(x)
Ostern mit tjaddons	from tjaddons import *
	easterday(2014)
Regenbogenfarben mit tjaddons	from tjaddons import *
	makeRainbowColor(50, 400)
Kurze Pause mit time	from time import *
	sleep(0.5)
Laufzeit messen mit time	from time import *
	startzeit = time()
	# auszuführende Befehle
	<pre>endzeit = time()</pre>
	laufzeit = endzeit - startzeit

TIGERJYTHON: EINE EIGENE FUNKTIONEN-BIBLIOTHEK ANLEGEN

Erstelle eine übliche python-Datei, in welcher alle Funktionen, die in anderen Programmen verwendet werden sollen, definiert sind.

Diese Datei muss in jenem Ordner abgelegt werden, in dem sich auch das Programm tigerjython (bzw. tigerjython.jar) befindet.

Beachte, dass einige tigerjython-spezifische Befehle (z.B. repeat) in dieser Bibliotheks-Datei nicht vorkommen dürfen! (?)

Als Alternative zum einfachen repeat bietet sich die for-Schleife an (siehe Zeile 5).

```
# Diese Datei heisst meinebibliothek.py
from gturtle import *
def vieleck(anz, seite):
    for i in range(anz):
        forward(seite)
        left(360/anz)
def ...
```

Die Bibliotheks-Datei muss in am Anfang jedes tigerjython-Programms importiert werden, wenn man darauf zugreifen will.

Das tigerjython-Programm, in welchem man die Bibliothek verwendet, muss selber auch im gleichen Ordner abgespeichert sein.

```
from gturtle import *
from meinebibliothek import *
makeTurtle()
setPenColor("red")
vieleck(10, 25)
forward(s1/4)
...
```

BEISPIEL 1 DEMO_CLICK_FIGURE

```
from gturtle import *
from random import *
def vieleck(anz,seite,dicke,farbe):
      penWidth(dicke)
      setPenColor(farbe)
      for i in range(anz):
            forward(seite)
            left(360/anz)
def spirale(anz,seite,richtung,dicke,farbe):
      penWidth(dicke)
      setPenColor(farbe)
      if richtung == 1:
            for i in range(16*anz):
                  forward(i*seite/10)
                  left(22.5)
      else:
            for i in range(16*anz):
                  forward(i*seite/10)
                  right(22.5)
def onClick(x,y):
      setPos(x,y)
      a = randint(1,2)
      if a == 1:
            n = randint(3,15)
            l = randint(10,50-2*n)
            d = randint(2,6)
            f = makeColor(random(), random(), random())
            vieleck(n,l,d,f)
      else:
            n = randint(2,4)
            l = randint(2,10)
            r = randint(1,2)
            d = randint(2,6)
            f = makeColor(random(), random(), random())
            spirale(n,l,r,d,f)
makeTurtle(mouseHit = onClick)
hideTurtle()
```