Formeln Wärmelehre

Längenausdehnung	$\Delta I = I_0 \cdot \alpha \cdot \Delta T = I_0 \cdot \alpha \cdot \Delta \vartheta$
Langenausaemiang	$\Delta I = I0 \text{ ad } I = I0 \text{ ad } 0$

Volumenausdehnung
$$\Delta V = V_0 \cdot 3 \cdot \alpha \cdot \Delta T = V_0 \cdot 3 \cdot \alpha \cdot \Delta \vartheta$$

Ideales Gas
$$p \cdot V = n \cdot R \cdot T = (m/M) \cdot R \cdot T$$

Druck in z.B. bar oder $p = F / A = N/m^2$

Volumen in z.B. ml, m³ Stoffmenge in mol n

eingewogene Masse, in z.B. g m Molmasse, in z.B. g/mol

universtelle Gaskonstante R=8.314 J mol-1 K-1

Temperatur in Kelvin

Wärme
$$\Delta Q^{\vee} = \Delta Q^{\nearrow}$$
 [J = Nm = kg m²/s²]

$$\Delta Q = c \cdot m \cdot \Delta T$$
 c spezifische Wärmekapazität [J /(kg·K)]

$$Q = m \cdot L_f \text{ resp.}$$
 $Q = m \cdot L_V$

Lf spezifische Schmelzenergie, Lv spezifische Siedeenergie

Andere Energieformen
$$Q = m \cdot g \cdot h = \frac{1}{2} \cdot m \cdot v^2 = P \cdot t = m \cdot H$$

pot. E. kin. E. Elektr. Arbeit Heizwert

P: Leistung [W=J/s]

Wärmeleitung
$$\frac{\Delta Q}{\Delta t} = \lambda \cdot \frac{\Delta T}{d} \cdot A$$
 ΔQ transportierte Wärme [J], Δt Zeitdauer [s],

$$\lambda$$
 Wärmeleitfähigkeit $\left[\frac{W}{m_K}\right]$ resp $\left[\frac{J/s}{m_K}\right]$,

$$\lambda$$
 Wärmeleitfähigkeit $[rac{W}{m\,K}]$ resp $[rac{J/s}{m\,K}]$, ΔT Temp.-Differenz [K], d Schichtdicke [m], A Fläche [m2]

Wärmestrahlung
$$I = \frac{Q}{t \cdot A} = \frac{P}{A} = \sigma \cdot T^4$$
 I Intensität, A Fläche [m²], P Leistung [W], T Temperatur [K], t Zeit [s]

$$\sigma = 5.67 \cdot 10 - 8 \frac{W}{m^2 K^4}$$

Innere Energie
$$\Delta U = W + Q$$
 mit $W = -p \cdot \Delta V$

für einatomare Gase gilt:
$$U = \frac{3}{2} \cdot n \cdot R \cdot T$$
 resp. $U = \frac{3}{2} \cdot p \cdot V$

$$\Delta U = \frac{3}{2} \cdot n \cdot R \cdot \Delta T$$

Isobare Zustandsänderung
$$\Delta U = Q + W$$
 resp.

$$m \cdot c_{V} \cdot \Delta T = m \cdot c_{p} \cdot \Delta T - p \cdot \Delta V$$

mit Umformungen:
$$R_s = c_p - c_v$$
 $R_s = \frac{R}{M}$

Isochore Zustandsänderung
$$\Delta U = Q = m \cdot c_{V} \cdot \Delta T$$

Isotherme Zustandsänderung
$$\Delta U = 0$$
 Q = - W

$$W = m \cdot R_S \cdot T \cdot \ln \frac{v_2}{v_1} \qquad \text{oder} \qquad W = p_1 \cdot V_1 \cdot \ln \frac{v_2}{v_1}$$

Adiabatische Zustandsänderung
$$\Delta U = W$$